Nielsen coincidence theory in arbitrary codimensions
نویسندگان
چکیده
منابع مشابه
Nielsen Coincidence Theory in Arbitrary Codimensions
Given two maps f1, f2 : M −→ N between manifolds of the indicated arbitrary dimensions, when can they be deformed away from one another? More generally: what is the minimum number MCC(f1, f2) of pathcomponents of the coincidence space of maps f ′ 1 , f ′ 2 where f ′ i is homotopic to fi, i = 1, 2 ? Approaching this question via normal bordism theory we define a lower bound N(f1, f2) which gener...
متن کاملMethods in Nielsen Coincidence Theory
In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coincidence sets of those pairs of maps which are homotopic to (...
متن کاملRemnant properties in Nielsen coincidence theory
We give an extension to coincidence theory of some key ideas from Nielsen fixed point theory involving remnant properties of free group homomorphisms. In particular we extend Wagner’s theorem for computing Reidemeister classes for Wagner characteristic homomorphisms, which allows us to compute doubly twisted conjugacy classes in many cases. We also extend Kim’s method for homomorphisms with bou...
متن کاملThe Nielsen coincidence theory on topological manifolds
We generalize the coincidence semi-index introduced in [D-J] to pairs of maps between topological manifolds. This permits extending the Nielsen theory to this class of maps. Introduction. In this paper we generalize the coincidence semi-index theory, introduced in [D-J] in the smooth case, to pairs of maps between topological manifolds. It will be based on the topological transversality lemma (...
متن کاملLefschetz and Nielsen Coincidence Numbers on Nilmanifolds and Solvmanifolds
Suppose M 1 ; M 2 are compact, connected orientable manifolds of the same dimension. Then for all pairs of maps f,g:M 1 ?! M 2 , the Nielsen coincidence number N(f,g) and the Lefschetz coincidence number L(f,g) are measures of the number of coincidences of f and g: points x 2 M 1 with f(x) = g(x). A manifold is a nilmanifold (solvmanifold) if it is a homogeneous space of a nilpotent (solvable) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2006
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crelle.2006.075